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Purpose. Microarrays have been utilized in many biological, physiological and pharmacological studies

as a high-throughput genomic technique. Several generations of Affymetrix GeneChip\ microarrays are

widely used in gene expression studies. However, differences in intensities of signals for different probe

sets that represent the same gene on various types of Affymetrix chips make comparison of datasets

complicated.

Materials and Methods. A power coefficient scaling factor was applied in the pharmacokinetic/

pharmacodynamic (PK/PD) modeling to account for differences in probe set sensitivities (i.e., signal

intensities). Microarray data from muscle and liver following methylprednisolone 50 mg/kg i.v. bolus and

0.3 mg/kg/h infusion regimens were taken as an exemplar.

Results. The scaling factor applied to the pharmacodynamic output function was used to solve the

problem of intensity differences between probe sets. This approach yielded consistent pharmacodynamic

parameters for the applied models.

Conclusions. Modeling of pharmacodynamic/pharmacogenomic (PD/PG) data from diverse chips should

be performed with caution due to differential probe set intensities. In such circumstances, a power

scaling factor can be applied in the modeling.

KEY WORDS: bioinformatics; computational biology; pharmacodynamics; pharmacogenomics;
pharmacokinetics.

INTRODUCTION

Gene expression profiling is useful in understanding
gene expression changes and interactions underlying basic
biological processes. Microarray techniques provide a unique
tool in assessing numerous mRNA expression levels in
parallel in a high-throughput manner. Microarrays have been
utilized in the research of many biological, physiological and
pharmacological processes and provide multiple biomarkers
in drug screening. Oligonucleotide gene chips produced by
Affymetrix are widely used in microarray studies. As
genechip technology evolves, several generations of chips
have emerged. For example, Affymetrix has marketed to

date both a RG_U34 and RAE230A genechip line for the rat
genome. Probes for the same gene (i.e., the small unique
sequences which are complementary to a particular gene)
differ in sequence on these two types of chips. Futhermore,
within a particular type of chip there are often multiple probe
sets for the same gene. Differences in the signal intensity
obtained on hybridization of these different probe sets to the
same mRNA make comparison of data on various types of
chips and of data for multiple probe sets for the same gene on
the same chip problematic.

Corticosteroids (CS) are potent anti-inflammatory and
immunosuppressive drugs. They are commonly used for the
treatment of allergies and autoimmune diseases such as
asthma, rheumatoid arthritis, nephritic syndrome, lupus, and
immunosuppression for organ transplant patients. The
clinical use of CS is associated with numerous side effects
such as Cushing_s syndrome, steroid diabetes, osteoporosis,
dyslipidemia, arteriosclerosis, and muscle wasting. Almost
every tissue is involved in the biological functions of CS.
Microarrays allow assessment of the diverse functions of CS
by increasing the number of genes explored to thousands in
a single study. We have used microarrays in the framework
of a time series as a high-throughput data collection method
in order to obtain the scope of data necessary for
pharmacokinetic/pharmacodynamic/pharmacogenomic (PK/
PD/PG) modeling of pharmacological events triggered by
CS (1).
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Simultaneous modeling of PK/PD/PG profiles from
diverse conditions (dosing regimens, dose levels, administra-
tion routes) would be beneficial in understanding the
mechanisms and dynamics of biological processes. However,
in comparing data from various array types, different signal
intensities of probe sets for the same gene should be taken
into consideration. In the present study, a scaling factor was
incorporated in the PK/PD/PG modeling of microarray data
obtained from two different Affymetrix chips. Our aim is to
provide a strategy to seperate sensitivity differences between
probe sets from drug-induced pharmacodynamic changes and
to reliably resolve the dynamics of pharmacological events
induced by drugs. In the present report, microarray data from
two different dosing regimensVacute and chronic methyl-
prednisolone (MPL) studies were taken as examples in our
simultaneous modeling. Two different Rat Affymetrix Gen-
eChip\ Rat Genome microarrays, RG_U34A and RAE230A,
were used for acute and chronic studies.

MATERIALS AND METHODS

Experimental. Tissues were obtained from animal stud-
ies previously performed in our laboratory (2Y4). Male adre-
nalectomized (ADX) Wistar rats (Harlan Sprague-Dawley
Inc., IN) were used in both acute and chronic studies. In the
acute study, a single intravenous bolus of 50 mg/kg MPL

(Solu-Medrol, Pharmacia-Upjohn Company, MI) was given
to 47 animals via right jugular vein cannula. Rats were
sacrificed by aortic exsanguinations at 16 time points
between 0 to 72 h after dosing. Four vehicle-treated rats
were designated as controls and were considered as sacrificed
at time point zero. In the 7-day infusion study, 0.3 mg/kg/h of
MPL reconstituted in supplied diluent was administered to 40
rats. The infusions were given using Alzet osmotic pumps
(model 2001, flow rate 1 ul/h; Alza, Palo Alto, CA). Pumps
were subcutaneously implanted between the shoulder blades
on the back. Rats were sacrificed by aortic exsanguinations at
ten time points throughout the 7-day study. Four control rats
were implanted with a saline-filled pump. Liver and gastroc-
nemius muscles were rapidly excised, quickly frozen in liquid
nitrogen, and stored at j80-C.

Microarrays. Frozen muscle and liver tissues were
ground into powder. Total RNA extractions were carried
out by a Trizol-chloroform based extraction method followed
by further purification on RNeasy columns. Isolated tissue
RNA from each individual sample was used to prepare
biotinylated cRNA target according to manufacturer proto-
cols. The biotinylated cRNAs from the acute study were
hybridized to 51 individual Affymetrix GeneChip\

RG_U34A (Affymetrix, Santa Clara, CA). The target
cRNAs from the chronic study were hybridized to 44
individual Affymetrix GeneChip\ RAE230A (Affymetrix,
Santa Clara, CA). Oligonucleotide microarrays were utilized

Fig. 1. Time course of myristoylated alanine-rich C-kinase substrate gene expression in ADX rat muscle following acute (bolus) and chronic

(infusion) MPL treatments. Each acute and chronic pair presents modeling of the single acute probe set with three different probe sets from

the chronic dataset. Symbols are the mean gene array data and bars are standard deviations. Solid lines are simultaneously fitted curves

(Eq. 2) for acute and chronic data.

Table I. Estimated Parameters for Modeling of Myristoylated Alanine-Rich C-Kinase Substrate in Muscle

Parameter

(Units) Definition

rc_AA955167_s_

at/1370948_a_at

rc_AA955167_s_

at/1370949_at

rc_AA955167_s_

at/1373432_at

Value CV% Value CV% Value CV%

SFC Scaling Factor 1.192 17 1.925 13 1.254 15

kd (hj1) mRNA Degradation Rate Constant 0.233 31 0.311 27 0.257 29

Imax Maximum Inhibitory Effect 0.679 17 0.603 12 0.650 14

IC50 (fmol/mg protein) DR(N) Concentration at 50% Maximum Inhibition 0.724 71 0.486 60 0.650 63
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for high reproducibility between separate arrays. The entire
data set has been submitted to the National Center for
Biotechnology Information (NCBI) Gene Expression
Omnibus database (GSE490, GSE5101, GSE487) and is
also available online at http://pepr.cnmcresearch.org/ (5).

Data Mining. Data mining of the microarray data was
described in previously published articles (6Y8). A new
approach was developed based on the unique nature of
high-throughput gene arrays coupled to a time series design.
In brief, Affymetrix Microarray Suite 5.0 (MAS 5.0) was used
for initial data acquisition. Based on comparison of matched
and mismatched pairs, a Fcall_ of present (P), absent (A) and
marginal (M) was determined for each probe set on each
chip. The results were then transferred to another program,
GeneSpring 7.0 (Silicon Genetics, Redwood City, CA). The
expression data of each probe set at various time points were
expressed as a ratio of the mean of the four control values for
that probe set and were referred as Bnormalized intensity.^ A
series of filters was applied to the data, which included
filtering for expression of the probe set in the tissue, filtering
for regulation of the probe set by the drug, and quality-
control filtering.

PK/PD/PG MODELING

The pharmacokinetics of MPL and glucocorticoid re-
ceptor dynamics in both liver and muscle following MPL
acute and chronic treatments have been analyzed (2Y4). The
receptor dynamics model was built under the assumption that
unbound MPL diffuses through cell membranes and binds
with cytosolic free receptors. Drug-receptor complex is
translocated into nuclei where it binds to glucocorticoid
response elements (GREs) in the target DNA. The binding
of drug-receptor complex and GRE enhances or inhibits the
expression of target genes. CS is known to inhibit the
expression of its own receptor (9). After dissociation from
DNA, GR receptors are recycled into cytosol, where part of
the receptors are degraded and the rest may be further
activated by MPL. In the following pharmacogenomic
modeling, nuclear drug receptor complex (DR(N)) is as-
sumed to be the main driving force for target gene
transcriptional regulation. The gene array data were obtained
from a Fgiant rat_ study design reflecting naı̈ve pooling of
data from a group of animals (2Y4). Assuming that the errors
from the observed and predicted responses are normally

Fig. 2. Time course of tropomyosin 1a gene expression in ADX rat muscle following acute (bolus) and chronic (infusion) MPL treatments.

Each acute and chronic pair presents modeling of the single acute probe set with two different probe sets from the chronic dataset. Symbols

are the mean gene array data and bars are standard deviations. Solid lines are simultaneously fitted curves (Eqs. 5 and 6) for acute and chronic

data.

Table II. Estimated Parameters for Modeling of Tropomyosin 1a in Muscle

Parameter (Units) Definition
M60666_s_at/1379936_at M60666_s_at/1390471_at

Value CV% Value CV%

SFC Scaling Factor 2.088 17 1.291 16

kd (hj1) mRNA Degradation Rate Constant 0.437 31 0.423 30

IC50 (fmol/mg protein) DR(N) Concentration at 50% Maximum Inhibition 31.74 29 30.53 28

IC50_BS(fmol/mg protein) BS Concentration at 50% Maximum Inhibition 4.615 25 4.612 25
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distributed, the ADAPT II program (10) with the maximum
likelihood method was applied for all fittings. The following
variance model was used:

Variance ¼ �1 þ �2 � Y tð Þð Þ2 ð1Þ

where d1 and d2 are variance parameters and Y(t) represents
the model output function at time t. The goodness-of-fit
criteria included visual inspection of the fitted curves,
estimator criterion value, sum of squared residuals, Akaike
information criterion, Schwartz criterion, and coefficients of
variation (CV) of the estimated parameters.

RESULTS

Several genes were selected as exemplars for PK/PD
modeling using data from two different types of chips. The
first one is myristoylated alanine-rich C-kinase substrate. The
dynamics of this gene in muscle was described by an indirect
response model where DR(N) inhibits the transcription of

the gene. The differential equation and initial condition
describing the mRNA transcription (mRNA) are:

dmRNA

dt
¼ ks � 1� Imax �DR Nð Þ

IC50 þDR Nð Þ

� �

� kd �mRNA mRNA 0ð Þ ¼ 1

ð2Þ

where rate constants represent zero-order synthesis rate (ks)
and first-order degradation (kd) of mRNA. In the modeling,
ks is considered as a secondary parameter calculated from kd

and the baseline, Imax is the maximum inhibition of gene
transcription, and IC50 represents the concentration of
DR(N) at which the production rate of mRNA is reduced
to 50% of its baseline level. The baselines of mRNA in acute
(BmRNA_A) and chronic (BmRNA_C) studies were fixed to 1.
The output functions of mRNA in acute (YA(t)) and chronic
(YC(t)) studies were:

YA tð Þ ¼ mRNAA tð Þð ÞSFA ð3Þ

YC tð Þ ¼ mRNAC tð Þð ÞSFC ð4Þ

Fig. 3. Time course of mitogen-activated protein kinase 6 gene expression in ADX rat muscle following acute (bolus) and chronic (infusion)

MPL treatments. Each acute and chronic pair presents modeling of the single chronic probe set with two different probe sets from the acute

dataset. Symbols are the mean gene array data and bars are standard deviations. Solid lines are simultaneously fitted curves (Eqs. 5 and 6) for

acute and chronic data.

Table III. Estimated Parameters for Modeling of Mitogen-Activated Protein Kinase 6 in Muscle

Parameter (Units) Definition
M64301_at/1368273_at M64301_g_at/1368273_at

Value CV% Value CV%

SFA Scaling Factor 1.041 16 0.810 13

IC50 (fmol/mg protein) DR(N) Concentration at 50% Maximum Inhibition 93.7 30 80.1 28

ke (hj1) Transit Rate Constant 0.0182 17 0.0181 15

IC50_BS (fmol/mg protein) BS Concentration at 50% Maximum Inhibition 4.63 15 4.68 13

g Power Coefficient 3.44 32 3.42 30
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where mRNAA(t) and mRNAC(t) represent mRNA expres-
sion at time t in acute and chronic studies. Scaling factors
(SFA and SFC) are used to correct for different signal
intensities between probe sets. The same output functions
were used for all of the following pharmacogenomic model-
ing. Since relative sensitivity was considered in the present
report, SFA was fixed to 1 in the modeling.

A characteristic of Affymetrix microarrays is that in
many cases, a chip contains multiple probe sets for the same
gene. One probe set in the acute study and three probe sets
in the chronic study remained after data mining for myr-
istoylated alanine-rich C-kinase substrate in muscle. Simul-
taneous modeling of acute and chronic data was performed
using the acute profile and three different chronic profiles.
The fitted curves are shown in Fig. 1. The estimated
parameters are listed in Table I. The mRNA expression
following both acute and chronic MPL dosing was simulta-
neously modeled using Eq. 2. The resultant gene-specific
dynamic parameters kd, Imax and IC50 are similar. The
estimated SFC parameter is between 1.192 and 1.925. The
scaling factor represents the relative sensitivity (ie., signal
intensity) of a probe set to a fixed amount of change. A
higher scaling factor value suggests a higher sensitivity of the

probe set. The scaling factor was employed in the function as
a power coefficient. All three estimated scaling factors are
higher than 1, suggesting higher sensitivity of the probe sets
on the chronic chip (RAE 230A) than that on the acute chip
(RG_U34A).

The second exemplar was tropomyosin 1a. It was
assumed that tropomyosin 1a mRNA expression was de-
scribed by a direct inhibitory effect from DR(N) and an
indirect inhibitory effect from an intermediate biosignal (BS)
in muscle. The differential equations are:

dmRNA

dt
¼ ks � 1� DR Nð Þ

IC50 þDR Nð Þ

� �
� 1� BS�

IC�
50 BS þ BS�

� �

�kd �mRNA mRNA 0ð Þ ¼ 1

ð5Þ

dBS

dt
¼ ke � DR Nð Þ � BSð Þ BS 0ð Þ ¼ 0 ð6Þ

Fig. 4. Time course of mitochondrial precursor receptor gene expression in ADX rat liver following acute (bolus) and chronic (infusion) MPL

treatments. Each acute and chronic pair presents modeling of the single acute probe set with two different probe sets from the chronic dataset.

Symbols are the mean gene array data and bars are standard deviations. Solid lines are simultaneously fitted curves (Eq. 7) for acute and

chronic data.

Table IV. Estimated Parameters for Mitochondrial Precursor Receptor in Liver

Parameter (Units) Definition
U21871_at/1398870_at U21871_at/ 1370785_s_at

Value CV% Value CV%

SFC Scaling Factor 1.458 12 1.265 15

kd (hj1) mRNA Degradation Rate Constant 0.148 42 0.176 27

S (fmol/mg protein)j1 Stimulatory Coefficient 0.00785 47 0.00714 25

ke (hj1) Transit Rate Constant 0.0323 85 0.0170 63

IC50_BS (fmol/mg protein) BS Concentration at 50% Maximum Inhibition 141.1 43 77.5 25
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In addition to the symbols used previously, ke represents the
first-order rate constant describing the production of BS and
was fixed at 0.005 hj1 in the modeling, IC50_BS depicts the
concentration of BS at which the production rate of mRNA
is reduced to 50% of its baseline level under inhibition of the
intermediate biosignal, g is the slope factor of the Hill
function and was fixed to 1 in fitting. The baselines were
fixed to 1. Eqs. 3 and 4 were used as the output functions and
SFA was fixed to 1.

One probe set in the acute study (RG_U34A) and two
probe sets in the chronic study (RAE230A) remained after
data mining for tropomyosin 1a in muscle. The estimated
parameters for simultaneous acute and chronic data model-
ing are listed in Table II while the fitted curves are shown in
Fig. 2. The proposed model was able to capture the
expression of tropomyosin 1a expression following both
treatments. The modeling results in almost identical dynamic
parameters kd, IC50 and IC50_BS. The two probe sets on the
RAE230A chip from the chronic study yield SFC values of
1.291 and 2.088, suggesting higher relative sensitivities than
the RG_U34A probe. Although on the same chip, the
relative sensitivity of probe set 1379936_at is higher than
probe set 1390471_at, leading to a greater extent of signal
reduction following drug treatment.

Mitogen-activated protein kinase 6 is the third exemplar.
Like tropomyosin 1a, the model assumed dual inhibitory effects
from DR(N) and an unknown biosignal. The pharmacodynam-
ics of mitogen-activated protein kinase 6 in muscle was also
described by Eqs. 5 and 6. The kd was fixed to 0.5 hj1 in the
fitting due to correlation between parameters. The baselines
were fixed to 1. Since two different probe sets were present on
chip U34A while only one probe set was on 230A, SFC was
fixed to 1. The SFA, ke and g were fitted with other
parameters. The best-fit curves and the mRNA expression
data are shown in Fig. 3. As shown in Table III, all parameters
except SFA are very similar for the two fittings. For probe set
M64301_at, the estimated SFA is close to 1, indicating similar
sensitivity of M64301_at and the probe on Chip 230A,
1368273_at. The SFA of 0.810 suggests a lower sensitivity of
probe set M64301_g_at than the other two probes.

The fourth exemplar was mitochondrial precursor re-
ceptor from liver. Expression of this gene was modeled by a
stimulatory effect from DR(N) and an indirect inhibitory
effect from an intermediate BS according to:

dmRNA

dt
¼ ks � 1þ S �DR Nð Þð Þ � 1� BS

IC50 BS þ BS

� �

� kd �mRNA mRNA 0ð Þ ¼ 1 ð7Þ

In addition to the symbols already defined, S is a linear
coefficient representing the stimulatory efficiency of DR(N)
and BS is described by Eq. 6. Baselines were fixed to 1. The
best-fit curves and the mRNA expression data are shown in
Fig. 4. Simultaneous modeling of acute and chronic data from
different probe sets yield similar kd and S values (Table IV).
The SFC values for both probe sets on chip RAE230A are
higher than 1. The estimated ke and IC50_BS are different.
Notice that both parameters estimated from the pair
U21871_at/1398870_at are about twice the values from

modeling the other pair U21871_at/ 1370785_s_at. Examina-
tion of the model and equations suggests possible correlation
between these two parameters.

In addition to probe sets on two different chips, probe
sets representing the same gene on the same chip may also
display differences in intensity. Three probe sets representing
ornithine decarboxylase remained after data mining in liver
following 50 mg/kg MPL i.v. bolus treatment. An indirect
response model with DR(N) stimulation was applied to
capture the dynamics of mRNA expression for this gene as
follows:

dmRNA

dt
¼ ks � 1þ S �DR Nð Þð Þ

� kd �mRNA mRNA 0ð Þ ¼ 1

ð8Þ

All parameters have been defined previously. Modeling was
performed previously using different kd and S values for each
individual probe set (1). In the present report, the data were
reanalyzed by performing simultaneous modeling of all three
profiles using the scaling factor approach. Eq. 3 was used as the
output function. SFA for probe set J04791_s_at was fixed to 1
while SFA for the other two probe sets were estimated. All
baselines were fixed to 1. The best-fitted curves are shown in
Fig. 5. Similar profiles but different amplitudes of up-regulation
are evident for these probe sets, with the normalized peak
values at 4, 6, and 8. Simultaneous fitting generated different
SFA values, 0.598 for J04792_at and 0.827 for X07944exon#1-
12_s_at. Although the change of scaling factor among these three
probes was moderate, the net effect of the change on the output

Fig. 5. Time course of ornithine decarboxylase gene expression in

ADX rat liver following acute (bolus) MPL treatment. Each panel

presents a different probe set for ornithine decarboxylase from the

acute dataset. Symbols are the mean gene array data and bars are

standard deviations. Solid lines are simultaneously fitted curves (Eq. 8)

for all three probe sets.
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function was high since it is a power coefficient. The S was
estimated at 0.0237 (fmol/mg protein)j1 and kd at 0.311 hj1 with
reasonable precision (CV less than 20%).

DISCUSSION

In all of the above examples, SF coefficients were used to
account for relative sensitivities (i.e., signal intensities). In the
modeling, we assume the sensitivity of one probe set is 1.0,
while we estimate the relative sensitivity of the other probe
sets compared to the first one. Correlations between SF values
and other parameters were small, and usually SF could be
accurately estimated with a reasonable CV. The scaling factor
approach has been applied to data from both liver and muscle.
The similarity in estimated gene-specific dynamic parameters
could be considered as partial validation of the approach.

Two rat genome microarrays, Affymetrix Genechip\

RG_U34A and RAE230A, were utilized in our pharma-
cogenomic studies. The newer array, RAE230A, was used for
chronic studies while the first-generation rat genome set
RG_U34A was used for acute studies as RAE230A chips were
not available at the time the acute studies were performed.
RG_U34A contains 8,799 probe sets, including more than 7,000
genes and about 1,000 ESTs. RAE230A contains 15,967 probe
sets representing a greater number of genes than those present
on RG_U34A chip. Besides differences in the numbers of probe
sets, the array design of the RAE230A is different from
RG_U34A (11). The new design allows detection of the true
3_-transcript end and prevents selection of probe sets against
aberrantly extended clusters. The probe quality is ensured by a
thermodynamic multiple linear regression model which
improves selection of probes that hybridize well to the correct
target and reduces non-specific hybridization. Each probe set
on the RAE230A chip contains 11 matched and mismatched
probe pairs while each probe set on the RG_U34A chip has 16
probe pairs. The nucleotide length of each probe on RG_U34A
is longer than that on RAE230A. The diversities of probe
length and sequence may lead to discrepancies in probe GC
content, Tm value, and hybridization efficiency, leading to
differences in signal intensities. Since the differences between
probe sets will not be the same for each gene under
consideration, we cannot use a generalized method for
normalization. The difference in relative sensitivity is gene
specific but not chip specific. Thus each gene has to be
accounted for instead of each chip. This can be seen by the
wide range of SF values estimated in the present report.

Affymetrix has examined their microarrays and did a
comparison between Rat Genome U34A and 230A chips
(11). Their study shows that the new RAE230A design, with
a reduced probe set size, produced more informative data
compared to RG_U34A. The majority of RAE230A probe
sets tend to produce higher signals relative to the correspond-
ing probe sets on the old RG_U34A chip (11). In total, 51%
of the 230A probe sets have significantly higher signals. Only
5.7% of the sets have significantly higher signals for the
RG_U34A probe sets. The remaining 43% of probe sets
exhibit similar intensity between the two chip designs. This is
consistent with our findings in modeling as SFC tends to be
higher than SFA. In all the probe sets that we analyzed in

both liver and muscle, 56% of these have an estimated SFC

higher than 1.2 when SFA is fixed at 1. The SFC values for
32% of probe sets are between 0.8 to 1.2, while the remaining
12% have a SFC value lower than 0.8.

In summary, a scaling factor was applied sucessfully to
solve the problem of intensity differences between probe sets
for microarray data coming from different genechips reflect-
ing pharmacogenomic effects of corticosteroids.
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